Experimental and Theoretical NANOTECHNOLOGY http://etn.siats.co.uk/

TiO₂/Bi₅O₇I nanocomposite for photoanode of electrochemical cell

Anissa A. Putri^{1,2,*}, S. Kato¹, N. Kishi¹, T. Soga¹

¹Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, 466-8555 Japan ²Chemistry Department, Walisongo State Islamic University, 50185, Indonesia *)E-mail: <u>anissaputri@walisongo.ac.id</u>

Received: 1/6/2019 / Accepted: 15/6/2019

Bi₅O₇I is one of the bismuth oxyiodide (BiOI) derivate with bismuth and oxygen-rich contained which can act as semiconductor material. Here, we reported that a successful TiO₂/Bi₅O₇I nanocomposite films fabrication could be carried out by the annealing treatment of TiO₂/BiOI films at 450 °C. The prepared films have been applied as the photoanode in photovoltaic devices by adapting the dye-sensitized solar cell (DSSC) model. Our annealed BiOI was Bi₅O₇I which was proven by the X-Ray diffraction (XRD) patterns of both materials. The usage of Bi₅O₇I in TiO₂/Bi₅O₇I films could change the optical behavior of films which has been indicated by the decreasing in its band gap energy, extending the absorption wavelength edge of the films. The backscattered scanning electron microscope (SEM) images depicted the incorporation of Bi₅O₇I in the TiO₂-contained films. We designed the photovoltaic device structure as the arrangement: FTO/TiO₂/Bi₅O₇I/Iodine electrolyte/Pt-FTO. Overall, the addition of Bi₅O₇I could enhance the photovoltaic performance of TiO₂/Bi₅O₇I cells in comparison to the only TiO₂ films. The slight enhancement in short-circuit current values over the TiO₂/Bi₂O₃ from the previous report can be the evidence that Bi₅O₇I is also has the benefit which is not only for photocatalytic reaction, but also the photovoltaic application.

Keywords: BiOI; Bi₅O₇I; TiO₂; Nanocomposite; Photovoltaic; Annealing.

1. INTRODUCTION

Solar cell device development is still being the most interested research focus among the researchers since the demand of energy has increased rapidly. Solar energy is abundant and it can be considered as the clean renewable resources to generate the electricity [1]. Since the two decades, DSSC has attracted the attention despite the fact on its less stability and high-cost issue. Thus, many researches have been focused to build a competitive photoelectric cell from its performance and its production cost. Although each part in the solar energy device plays an

important role, the photoanode development study has been frequently attempted to achieve the higher power conversion efficiency (PCE). Generally, the photoanode composition in DSSC can be consisted of the semiconductor material and dye. The most common semiconductor materials used in DSSC are TiO_2 and ZnO due to

their transparency character, stability in air, and their unique electronic property. However, both the aforementioned materials only can show the higher activity under the UV-Visible light which is only 4% from the reached total solar energy to the earth [2]. To increase the activity of TiO_2 and ZnO, some procedures have been developed, like contacting these materials with the dye [3,4].

Another way to improve the TiO_2 performance is by sensitization with visible light active photocatalyst to enhance the solar light absorption of TiO_2 [5]. The combination of TiO_2 with photocatalyst material can affect the band gap energy of semiconductor, the position of valence band and conduction band, and it may have the influence on the both materials crystal form. As a result, the combined semiconductor had the better performance [6,7]. The sensitization of inorganic material in TiO_2 or ZnO has some advantages over the dye sensitization. In DSSC, the stability is still being the issue since the organic dye used in this system is mostly unstable [8]. Thus, in line with the previous work [9], we have tried combining TiO_2 and bismuth-based material, like Bi_5O_7I to study the bismuth-based material chance for photovoltaic application. In this study, we reported the fabrication of Bi_5O_7I as the bismuth-based material for photovoltaic application without involving the dye in the devices and to the best our knowledge, Bi_5O_7I is no longer applied in photovoltaic devices.

Bi₅O₇I is one of the BiOI families which have the character as semiconductor material and photocatalyst. Due to that fact that it has been common to apply this material as the photocatalyst, it can be considered as the promising material. In photocatalytic reaction, Bi_5O_7I has succeed to degrade the dye, like RhB in water and acetaldehyde [10,11] and phenol [12]. In addition, it is possible to synthesize doped material into Bi_5O_7I and this work could show the performance enhancement of Bi_5O_7I in the photocatalytic reaction [13]. Bi_5O_7I material consists of Bi atom which has the 6s orbital, O atom with its 2p orbital, and 5p orbital from I atom to construct the top of valence bond in Bi_5O_7I , while the 6p orbital from Bi atom will exist in its conduction band [14,15]. By this arrangement, the hybridization among 6s orbital and 2p orbital with 5p orbital in the valence band causes the valence band be more dispersed. As a consequence, it allows the photo-generated holes migration [16]. Compared to BiOI, Bi_5O_7I also has the ability in photocatalytic reaction due to the changing in its band gap energy and reduction/oxidation potential in its conduction and valence band as the effect of reducing in the iodine content [17].

Although the low performance of photovoltaic cell is being the problem in our TiO_2/Bi_5O_7I cell, it is interesting to note that due to its narrower band gap energy than Bi_2O_3 , it could achieve a better Jsc over the TiO_2 - Bi_2O_3 photoanode, 0.341 mA/cm² [9]. We expect that there will be a chance to improve the bismuth-based value for photovoltaic cell in the future since bismuth has been considered as the potential candidate to replace the lead usage in the photoelectrochemical cell.

2. EXPERIMENTAL

2.1. TiO₂/Bi₅O₇I nanocomposite film preparation

Bi₅O₇I was derived from BiOI which was synthesized from 2 mmol of Bi(NO₃)₃.5H₂O and KI precursors. The mixing of precursor for 15 min that was followed by 5 h stirring in 40 mL water prompted the orange mixture as powder material, BiOI. The precipitated then was separated from its solvent and this step was followed by washing in ethanol and water for several times. To prepare TiO₂/BiOI nanocomposite films, each of TiO₂/BiOI dispersion with percentage of BiOI: 0%; 6.25%; 12.5%; 25%; and 100% was carried out for 15 minutes. Prior to the annealing treatment of TiO₂/BiOI films at 450 °C to obtain TiO₂/Bi₅O₇I films, a doctor blade method was utilized to prepare the films. Around 6 μ m of thickness was also detected by cross-sectional SEM image.

2.2. Characterization

To characterize the film properties, we used some instruments to investigate the character of prepared TiO₂/Bi₅O₇I films. X-Ray diffraction (XRD) analysis, RINT-2100 diffractometer was operated to study the structural property of TiO₂, BiOI, and Bi₅O₇I films. Scanning electron microscope, FESEM JEOL JSM-7100F was utilized to study the morphology of films. UV-Visible spectrophotometer (JASCO 670 UV) was used to study the optical property of films. Then, for measuring the I-V performance of films, a solar simulator (AM 1.5G, 100 mW/cm²) was involved in our work.

2.3. Devices fabrication

To prepare the photovoltaic devices, we adapted DSSC model in our cell. However, in this work, the films were not soaked into dye solution. The cell consisted of FTO-TiO₂/Bi₅O₇I as photoanode was paired with Pt-FTO as a counter electrode. The iodine electrolyte was interleaved between the active electrodes. The active area for measurement was set up for 0.16 cm² and the device is illustrated in Fig. 4.

3. RESULTS AND DISCUSSION

Here we display the XRD patterns of TiO₂, Bi₅O₇I as the result of annealing at 450 °C, and BiOI as the parent bismuth material in our work. The diffractogram is shown in Figure 1. As the annealing process applied, we can see a total different of structural property between BiOI and Bi₅O₇I. BiOI has the (002); (102); and (110) peaks as the character of BiOI which those crystal planes exist in 2 θ around 19.6°; 29.8°; and 31.7°, respectively. This BiOI character is in line to the JCPDS card of BiOI no. 73-2062 [18]. In addition, the shifting peak to 2 θ 28.2° and 31.2° indicates the crystal plane of Bi₅O₇I (312) and (004) which appears in the diffractogram of Bi₅O₇I. The analysis of Bi₅O₇I refers to the JCPDS card no 40-0548 and our Bi₅O₇I character has the agreement with the previous report [19]. Since there is no BiOI peak assigned in the Bi₅O₇I diffractogram, we believed that the heating treatment can be a successful way for converting BiOI to Bi₅O₇I. The material changing from BiOI to Bi₅O₇I may occur based on the written reaction in Eq. 1. Annealing treatment supported with air oxidation allows the deiodination reaction in BiOI to form the bismuth and oxygen-rich material, like Bi₅O₇I. 5BiOI + O₂ \rightarrow Bi₅O₇I + 2I₂ (1) Fig. 1 also represents the diffractogram which shows the TiO₂ P25 peak character. (101) and (110) crystal planes correspond to anatase (25.2°) and rutile (27.4°) phases [20,21]. By this result, we can differentiate between anatase and rutile phase in TiO₂ since both peaks do not overlap. From the d-spacing calculation, we obtained 0.30 nm; 0.316 nm; and 0.353 nm for tetragonal BiOI, orthorhombic Bi₅O₇I, anatase TiO₂ which indicate the (102); (312); (101) crystal planes and those interplanar distance of lattice spacing matched to the previous reports [22–24]. The determination of d-spacing considers to the Bragg's law, $\lambda = 2d \sin\theta$, where λ is X-ray wavelength with Cu K α radiation, *d* is interplane spacing, and θ is the Bragg angle. By using the Debye-Scherrer equation, $L = K\lambda/\beta Cos\theta$, we obtained the average crystallite value for Bi₅O₇I, which was 28.66 nm and 25 nm for TiO₂, whereas *L* is the crystallite size, *K* is the constant (0.9), λ is X-ray wavelength with Cu K α radiation (0.154 nm), β is FWHM value, and θ is the Bragg angle. This result is near from to the calculated crystal size value in the previous work [25].

Figure 1 Diffractogram of TiO₂, Bi₅O₇I, and BiOI.

Figure 2 displays the backscattered (BSE) SEM images of composited TiO_2/Bi_5O_7I at the percentage of Bi_5O_7I was 12.5% and 25%. The BSE images can depict the differences in composition of material clearly. It is obviously seen from the picture that the more Bi_5O_7I percentage likes in Fig. 2B will show the more contained bigger material. The morphology of TiO_2 is particulate and Bi_5O_7I is sheet-like shape. The sheet Bi_5O_7I shape is a common morphology in the bismuth-based material since the (001) crystal plane is easy to form in the BiOI which depends on the amount of water as solvent during BiOI preparation [26]. Here we

noticed that Bi_5O_7I has the bigger size than TiO_2 which is in line to its crystallite size of both materials.

Figure 2 Backscattered electron SEM images of 12.5% (A) and 25% (B) of Bi₅O₇I and the higher magnification of 12.5% (C) and 25% films (D).

Analysis with UV-Visible spectroscopy resulted in the displayed graph in Fig. 3. It informs that owing to the higher mass percentage of Bi₅O₇I in the composite films, it resulted in the slight red-shift behavior of material response under the visible light. However, during the experiment, we noticed that the opacity increased along with the increase in the amount of Bi₅O₇I. The band gap energy determination from Tauc plot calculation follows the indirect band gap model which the equation is $\alpha hv = A(hv - Eg)^{n/2}$. The coefficient of absorption, Planck constant, photonic frequency, band gap energy, and the value which is correlated to the semiconductor transition are notated: α , h, v, Eg, n. n=1 is the transition model that is allowed as the indirect transition. We obtained the biggest band gap energy was more than 3 eV which came from the pure TiO₂. As the Bi₅O₇I added, the decrease in its band gap energy has been detected. Therefore, we obtained the maximum wavelength absorption around 399 nm; 411 nm; 416 nm; 430 nm; and 490 nm for Bi₅O₇I percentage in TiO₂/Bi₅O₇I 0%; 6.25%; 12.5%; 25%; and 100%, respectively.

Figure 3 Tauc plot of TiO₂; TiO₂/Bi₅O₇I; and Bi₅O₇I films.

Study in the photovoltaic behavior for TiO₂/Bi₅O₇I films was carried out using solar simulator system with Xenon lamp. The illustration of device is displayed in Fig. 4 and the I-V test result is shown in the Fig. 5A. A trend in the Jsc and Voc values is also shown in the Fig. 5B. By these results, we notice that the Bi₅O₇I usage has an effect on its photovoltaic performance. As the amount of this material increases, the ability in light harvesting also increases. Therefore, its Jsc will be higher as the impact of the higher visible light absorption. Comparing to the pure TiO₂ film in TiO₂/Bi₅O₇I 0%, the only Bi₅O₇I photoanode exhibits the highest photovoltaic parameter due to its highest Jsc. In addition, the bigger size of Bi₅O₇I may have the light scattering effect to maximize its Jsc. Therefore, the PCE has doubled for the Bi₅O₇I device. The resulting composite material shows the quality improvement as the electronic conductor material which is indicated by the slight increment in the open-circuit voltage value and a gradual increase of the short-circuit current.

Figure 4 The illustration of photovoltaic device structure for TiO₂ (A) and TiO₂/Bi₅O₇I (B).

We have compared the TiO₂/Bi₅O₇I cell with the TiO₂/Bi₂O₃ cell and TiO₂/BiOI cell from the previous reports. Due to the different band gap energy among those bismuth materials, with the arrangement: BiOI < Bi₅O₇I < Bi₂O₃, the short-circuit current also has the order list: TiO₂/BiOI > TiO₂/Bi₅O₇I > TiO₂/Bi₂O₃ [9,27]. Here we supposed that the light harvesting ability of those materials is responsible to short-circuit current enhancement. Generally, the more addition of Bi₅O₇I to the films also has an impact on the open-circuit voltage (Voc). The new electronic structure due to the combination of Bi₅O₇I and TiO₂ may be the reason on the Voc changing. It is clearly shown that by involving Bi₅O₇I, it can exhibit the better performance than pure TiO₂. The changing in its electronic state between in TiO₂ and composite TiO₂/Bi₅O₇I films due to the Bi₅O₇I addition resulted in the different band gap energy which is followed by the rearrangement in its Fermi level energy state. As a result, the recombination in the composited material might be lower in comparison to the TiO₂ itself. Thus, the Voc increases since the collected electron by FTO which travelled within the devices may be higher in the composite cell.

Figure 5 I-V curve (A) and Jsc and Voc graph (B) of TiO₂/Bi₅O₇I photovoltaic devices in the different percentage of Bi₅O₇I.

B

4. CONCLUSIONS

TiO₂/Bi₅O₇I nanocomposite films have been successfully prepared by the annealing treatment of TiO₂/BiOI at 450 °C. The annealing of BiOI could transform BiOI to Bi₅O₇I without any detected impurities. A backscattered electron images by SEM analysis could show the blending of TiO₂ and Bi₅O₇I in the sample. The more number of bigger material as Bi₅O₇I in the SEM image could be an evident that the more amount of Bi₅O₇I added to the sample. As the Bi₅O₇I weight percentage increased, it could induce the red-shifting of composite materials which extended the visible absorption wavelength edge. Therefore, Bi₅O₇I usage had the impact on its photovoltaic properties. By increasing the amount of Bi₅O₇I, it can be clearly observed that the Jsc increased and resulted in the higher PCE value. The changing in the film composition also could reveal the different Voc value which could be caused by the different electronic structure of semiconductor material in our photoanodes. This report shows that without employing the dye, Bi₅O₇I can be used as the photoanode component for photovoltaic device and it achieved the better performance than the only TiO₂ film.

References

- [1] P.K. Nayak, S. Mahesh, H.J. Snaith, D. Cahen, Nat. Rev. Mater. 4 (2019) 269
- [2] C.P. Sajan, S. Wageh, A.A. Al-Ghamdi, J. Yu, S. Cao, Nano Res. 9 (2016) 3
- [3] B. Kilic, S. Turkdogan, A. Astam, S.S. Baran, M. Asgin, E. Gur, Y. Kocak, J. Nanoparticle Res. 20 (2018) 11
- [4] M.Y.A. Rahman, S.N. Sadikin, A.A. Umar, Appl. Phys. A Mater. Sci. Process. 124 (2018) 460
- [5] X. Liu, Z. Xing, H. Zhang, W. Wang, Y. Zhang, Z. Li, X. Wu, X. Yu, W. Zhou, ChemSusChem 9 (2016) 1118
- [6] P. Luan, M. Xie, X. Fu, Y. Qu, X. Sun, L. Jing, Phys. Chem. Chem. Phys. 17 (2015) 5043
- [7] K. Du, G. Liu, X. Chen, K. Wang, J. Electrochem. Soc. 162 (2015) E251
- [8] S. Shalini, R. Balasundaraprabhu, T. Satish Kumar, N. Prabavathy, S. Senthilarasu, S. Prasanna, Int. J. Energy Res. 40 (2016) 1303
- [9] M. Chang, H. Hu, Y. Zhang, D. Chen, L. Wu, X. Li, Nanomaterials 7 (2017) 104
- [10] S. Sun, W. Wang, L. Zhang, L. Zhou, W. Yin, M. Shang, Environ. Sci. Technol. 43 (2009) 2005
- [11] J. Yang, L. Xu, C. Liu, T. Xie, Appl. Surf. Sci. 319 (2014) 265
- [12] C. Liu, X.J. Wang, Dalt. Trans. 45 (2016) 7720
- [13] X. Jiang, Y. Ma, C. Zhao, Y. Chen, M. Cui, J. Yu, Y. Wu, Y. He, J. Mater. Res. 33 (2018) 2385
- [14] W.L. Huang, Q. Zhu, J. Comput. Chem. 30 (2009) 183
- [15] Y. Li, H. Yao, J. Wang, N. Wang, Z. Li, Mater. Res. Bull. 46 (2011) 292
- [16] A. Kudo, K. Omori, H. Kato, J. Am. Chem. Soc. 121 (1999) 11459
- [17] X. Xiao, C. Xing, G. He, X. Zuo, J. Nan, L. Wang, Appl. Catal. B Environ. 148–149 (2014) 154
- [18] A.A. Putri, S. Kato, N. Kishi, T. Soga, Jpn. J. Appl. Phys. 58 (2019) SAAD09
- [19] H. Wang, L. Xu, C. Liu, Y. Lu, Q. Feng, T. Wu, R. Wang, Nanomaterials 9 (2019) 118
- [20] W.K. Wang, J.J. Chen, X. Zhang, Y.X. Huang, W.W. Li, H.Q. Yu, Sci. Rep. 6 (2016) 665
- [21] P. Selvaraj, A. Roy, H. Ullah, P. Sujatha Devi, A.A. Tahir, T.K. Mallick, S. Sundaram, Int. J. Energy Res. 43 (2019) 523
- [22] Y. Yu, G. Chen, X. Wang, D. Jia, P. Tang, C. Lv, 00 (2015) 1

- [23] L.A. Mabuti, I.K.S. Manding, C.C. Mercado, RSC Adv. 8 (2018) 42254
- [24] Z. Zhao, W. Zhang, X. Lv, Y. Sun, F. Dong, Y. Zhang, Environ. Sci. Nano 3 (2016) 1306
- [25] H. Feng, X. Jiao, R. Chen, X. Zhu, Q. Liao, D. Ye, B. Zhang, W. Zhang, J. Power Sources 419 (2019) 162
- [26] J. Lu, J. Wu, W. Xu, H. Cheng, X. Qi, Q. Li, Y. Zhang, Y. Guan, Y. Ling, Z. Zhang, Mater. Lett. 219 (2018) 260
- [27] S. Sfaelou, D. Raptis, V. Dracopoulos, P. Lianos, RSC Adv. 5 (2015) 95813

© 2019 The Authors. Published by SIATS (<u>http://etn.siats.co.uk/</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (<u>http://creativecommons.org/licenses/by/4.0/</u>).